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Abstract Accurate knowledge of critical transformation

temperatures in steels such as the austenitizing tempera-

ture, Tc, isothermal bainite and martensite start tempera-

tures, BS and MS, is of unquestionable significance from an

industrial and research point of view. Therefore a signifi-

cant amount of work has been devoted not only in under-

standing the physical mechanism lying beneath those

transformations, but also obtaining quantitatively accurate

models. Nowadays, with modern computing systems, more

rigorous and complex data analysis methods can be applied

whenever required. Thus, Artificial Neural Network (ANN)

analysis becomes a very attractive alternative, for being

easily distributed, self-sufficient and for its ability of

accompanying its predictions by an indication of their

reliability.

Introduction

Historically, correlation of experimental data against cho-

sen variables using linear regression analysis has been used

when dealing with complex problems. Nowadays, in the

computing era, a more powerful method of empirical

analysis involves the use of ANN.

Justification for an accurate knowledge of austenitiza-

tion temperature, Tc, arises when new steels and processing

routes are designed, or when solid-state phase transfor-

mations are being studied, to know at which temperature

the microstructure becomes completely austenitic, with no

precipitates at all that may interfere with further transfor-

mations or processes such as recrystallization, is of great

importance.

In a similar scheme, isothermal martensite and bainite

start temperatures, MS and BS, are defined as the highest

temperature at which austenite starts to transform to mar-

tensite and bainite respectively. Due to the excellent

combination of properties achieved by these microstruc-

tures and their wide range of applications, there is an

understandable and considerable industrial interest in being

able to predict, reliably, both temperatures.

The exact values of these three temperatures strongly

depend on the chemical composition of the steel, and

considerable work has been devoted to developing quan-

titative models for their compositional dependency. This

has long been done by means of linear or polynomial

regressions, that may be classified as non-adaptative

methods because the shape of the functions are pre-deter-

mined by the authors rather than adapted to the data.

Furthermore, such methods have very limited ranges of

applicability because of their inability to deal with complex

interactions. In contrast, ANN methods, as discussed later,

are adaptative functions, and are able to analyze a great

number of non-linear relationships of considerable com-

plexity.

Experimental data are presented to the network in the

form of input and output parameters, and the optimum non-

linear relationship is found by minimizing a penalized

likelihood. In fact, the network tries out many kinds of

relationships in its search for an optimum fit. Similar to

regression analysis, the input data xi are multiplied by

weights, but the sum of all these products forms the
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argument of a flexible mathematical function, often a

hyperbolic tangent. The output y is therefore a non-linear

function of xi. The exact shape of the hyperbolic tangent

can be varied by altering the weights. Further degrees of

non-linearity can be introduced by combining several of

these hyperbolic tangents, so that the ANN method is

capable of capturing almost arbitrarily non-linear rela-

tionships.

On the other hand, with the development of calcula-

tion frameworks such as CALPHAD, which allow pre-

diction of thermodynamic properties of complex systems

from data collected on simpler ones, more physically

relevant approaches relying on the satisfaction of some

thermodynamic criteria have, also, gained importance

[1, 2]. This approach allows a much wider range of

applicability than linear regression. Furthermore, the

physical basis suggests that it should extrapolate rela-

tively safely unless the mechanisms taken into account

change significantly with composition, or the empirical

thermodynamic data behave badly in extrapolation. Still

these approaches suffer of some important limitations,

i.e. in those models some of the thermodynamic criteria

used for the calculation of MS and BS are model-depen-

dent in the sense that are implicitly linked with the

database that has been used during the derivation of the

function to express its compositional dependency. This

becomes a problem if different databases are used in

deriving the criterion and in making predictions (or more

exactly, if the different databases describe similar sys-

tems differently). With the increasing number of ther-

modynamics databases available (SGTE, SSOL, NPL

plus, TCFE, Kmart) this problem cannot be neglected. In

addition, the accuracy of the model may be limited by

that of the underlying thermodynamic database, therefore

the empirical component is not eliminated but displaced

to lower levels of the model. Finally, making predictions

requires access to expensive thermodynamic calculation

software and databases.

New empirical methods such as ANN analysis, offer

attractive advantages, being not only easily distributed and

self-sufficient but also being able to cover arbitrarily large

ranges of data. As any other method, their domain of

applicability is somewhat determined by the data available

at the time the model is defined. However, a feature unique

to the method employed in the present work is the ability of

the model to accompany its predictions by an indication of

their reliability.

It is the aim of this work to present a more accurate

alternative to the classical empirical calculations of Tc, MS

and BS temperatures. In relation with the later the new

models have a wider range of application, and, in some

cases, alloying elements never before used in models have

been introduced.

Artificial neural network modeling

Method

Artificial neural network in the present context, essentially

refers to non-linear multiple regression tools using adap-

tative functions. Since the method has been described

elsewhere [3–5] what follows is an emphasis of the

essential and more distinctive features.

The typical structure of a neural network is presented in

Fig. 1, showing that in fact it is a simple combination of

transfer functions (hyperbolic tangents in our case) and

weights.

A complete mathematical description of a network it

might be as: the function for a network with j hidden units

(second-layer in Fig. 1), connecting the inputs xi to the

output y is given by

y ¼
X

j

w
ð2Þ
j zj þ hð2Þ ð1Þ

where:

zj = tanh
X

i

w
ð1Þ
ji xi þ hð1Þj

 !
ð2Þ

where w are weights and h the constant as defined in the

context of linear regression.

Training the network implies identifying an optimal set

of weights, given some data for which the output is known.

This is similar in principle to identifying the slope and

intercept of the best fit line in a linear regression. The

fundamental difference between this type of regression and

methods introduced earlier is that ANN correspond to

adaptative functions. In traditional methods, the author

fixes the form of the equation (for example, a second

degree polynomial), and identifies the parameters that lead

to optimal fitting of the observed data. Even in the few

cases where the authors assess more than one function (for

Fig. 1 The typical structure of a neural network as used for non-

linear multiple regressions. The first layer is made up by the inputs

(1,..., xi), the second by so-called ‘hidden units’ and the last one is the

output
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example, to determine whether a second or third degree

polynomial is most appropriate), the extent to which the

function is adapted to the data is very limited.

With ANN however, the complexity of the function is

mainly controlled by the weights themselves, so that the

optimization includes a determination of the most suitable

shape for the function. A potential difficulty with the use of

flexible non-linear regression methods is the possibility of

overfitting data. In the situation e.g. of having two possible

fitted functions, say a smooth curve and a non-linear

polynomial function, Fig. 2, it is not possible, without any

guiding physical principles relating X to Y, to assess which

of these functions is the more reliable in extrapolation. One

method widely applied to limit overfitting, is to perform the

optimization on only one part of the data, then use the

second part to determine which level of complexity best fits

the data. In Fig. 2, the solid circles represent the training

data, and the crosses the test data. During training of the

model the best solution appears as that which goes through

all the filled circles. When using the second part of the

dataset (crosses), it becomes obvious, however, that this

solution is strongly overfitted, the real trend is better cap-

tured by a simpler model. In Fig. 2, the training and test

error trends are schematically represented as a function of

the model complexity, when the later increases, not sur-

prisingly, the training error tends to decrease continuously.

In order to select which model generalizes best to unseen

data, the minimum in the test error is one of the parameter

used. There are other parameters which control the com-

plexity, which are adjusted automatically to try to achieve

the right complexity of the model [6, 7].

Bayesian framework

In regression analysis it is a common practice to best fit a

function to the data, i.e. to use the most probable values of

the weights for a given model. Thus, by comparing the

predictions against experimental values it is possible to

obtain an overall error but, with no indication of the

uncertainty as a function of position in the input space.

There is a treatment of ANN in a Bayesian framework

[6–8], which allows the calculation of error bars repre-

senting the uncertainty in the fitting parameters. Rather

than identifying optimum parameter, an optimum proba-

bility distribution of parameter values is fitted to the data.

This recognizes the existence of many functions which can

be fitted or extrapolated into uncertain regions of the input

space, without compromising the fit in adjacent regions

which are rich in accurate data. The errors bars accompa-

nying predictions become large when data are sparse or

locally noisy. The Bayesian framework is also used to

avoid overfitting and relevance determination [6, 7].

Databases

As it was mentioned earlier, the aim of this work is to

create models that describe the three temperatures, Tc, MS

and BS (both under isothermal conditions), as a function of

the steel chemical composition. For this purpose an

extensive bibliographic survey allowed the collection of a

great number of cases where steel composition and trans-

formation temperature/s were detailed. It is necessary to

highlight the fact that in all the collected cases there was no

interference of previous transformations or precipitation of

any kind, meaning that austenite, from which bainite and

martensite isothermally transform, has exactly the same

chemical composition of that reported for the bulk mate-

rial. Some of the alloy may contain minute quantities of

elements such as, P and S which have not been included in

the model.

For the Tc temperature

A total of 700 cases were collected mainly from ‘‘Atlas of

Isothermal Transformations’’ [9–12]. Table 1 shows the

list of 6 input variables used for the Tc analysis.

Fig. 2 Schematic illustrations of the overfitting problem in ANN and,

variation in the test and training errors as a function of the model

complexity
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In comparison with the best known Andrew’s model

[13], the ANN model developed significantly has increased

the applicability range and, as it will be shown, it is able to

predict a change of tendency when the eutectoid concen-

tration is reached.

For the isothermal BS temperature

A literature survey [14–19] allowed the collection of 247

individual cases where detailed chemical composition and

isothermal bainite start temperature were reported. Table 2

shows the list of 11 input variables used for the BS tem-

perature analysis.

In relation to other models [14, 20, 21] the range of

compositions has been increased between 1 and 2 wt.% for

C, Si, Mn and V, and more than 5 wt.% in the case of Cr,

Mo and W. Probably for the first time Al is included in a

study of these characteristics.

For the isothermal MS temperature

For the isothermal MS temperature, data were obtained

from a variety of sources [10, 14–16, 22–38]. This resulted

in a database containing about 1,200 entries and covering a

wider variety of compositions, Table 3, when compared

with existing models [14, 37, 39–41]. A detailed critical

assessment against some published models for the MS

temperature can be found in refs. [42, 43].

The procedure of database training has been described

numerous times in the literature, e.g. [4]. In the present

study, a commercial package [44] was used which imple-

ments the algorithm written by Mackay [7].

Results and discussion

Evolution of Tc temperature in Fe–C, Fe–Cr, Fe–Mo and

Fe–Mn binary systems, according to the ANN model, are

presented in Fig. 3.

In pure iron, carbon solubility in austenite (c) is much

greater than in ferrite (a), thus in the carbon range usually

encountered in steels, from 0.05 to 1.5 wt.%, the phase

field associated with c is larger compared with that of a,

that is to say C is a c-stabilizer. Therefore transformation of

c fi a occurs via an eutectoid reaction, the eutectoid

temperature and composition are 723 �C and about

0.8 wt.% C respectively, see for example ref. [45]. As it

was anticipated, the ANN model created for the prediction

of the Tc is able to predict a change in the tendency when

the eutectoid point is reached, at about 750 �C and

0.8 wt.% C, showing a good agreement with the experi-

mental behavior just described.

On the other hand, there are elements, such as Cr and

Mo, which fall in the category of the so called a-stabilizers.

These elements restrict the formation of c iron causing the

c area of the diagram to contract to a small area referred to

as the gamma loop, see refs. [46] and [47] for the Cr and

Mo cases, respectively. This means that Cr and Mo are

encouraging the formation of a iron, and one result is that

the a phase field becomes continuous. Alloys in which this

has taken place are, therefore, not amenable to the normal

heat treatments involving cooling through the c/a phase

transformation. As it can be observed in Fig. 3 the model

can not predict an exact c loop, but clearly shows the

appropriate tendency. This is explained keeping in mind

that none of the steels used to build the experimental data

base have an austenitization temperature higher than

1,290 �C, while the experimental data [46, 47] reports that

Table 1 Input variables of database for Tc temperature model

C Mn Si Ni Cr Mo

Min. 0.00 0.00 0.00 0.00 0.00 0.00

Max. 2.09 20.00 3.40 40.00 18.39 5.09

Concentrations are in wt.%

Table 2 Input variables of database for BS temperature model

C Si Mn Ni Cr Mo Cu Al V W Co

Min. 0.11 0 0 0 0 0 0 0 0 0 0

Max. 1.5 1.67 3.76 5.04 11.5 8 0.26 0.99 2.1 18.59 5

Concentrations are in wt.%

Table 3 Input variables of database for MS temperature model

C Si Mn Ni Cr Mo Cu Al V W Co Cu Nb Ti B N

Min. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Max. 2.2 3.8 10.2 31.54 17.9 8.0 3.04 3.01 4.55 18.5 30.0 3.0 1.9 2.5 0.06 2.6

Concentrations are in wt.%
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the loop for Fe–Cr and Fe–Mo diagrams closes at

1,400 �C. This deficiency of data results, as it was

described, in big errors bars and inaccurate predictions

making impossible the prediction of a close loop but just

the proper tendency. On the other hand, the model is able to

predict ,with a good degree of accuracy the Cr and Mo

concentration, from where the loop starts to close, about 12

and 3.3 wt.%, respectively [46, 47].

Mn has been selected as another example of a c-stabi-

lizer, [48], if added in sufficiently high concentrations,

completely eliminates the a phase and replaces it, down to

room temperature, with the c phase. This is accurately

described by the model, see predictions in Fig. 3.

Predicted isothermal BS and MS transformation temper-

atures when varying C, Mn, Cr, Ni, Mo and Si concen-

trations for a base steel composition Fe—0.3 C—1

Mn—0.3 Si—0.6 Cr—0.25 Mo—0.1 V all in wt.%, for

automotive components, are presented in Fig. 4. The ANN

model predicts that BS temperature is strongly influenced

by all the studied elements but Si, as has been also ob-

served by other authors, see e.g. refs. [14, 20, 21]. The big

errors bars for Cr concentrations above 5–6 wt.%, are a

consequence of a lack of enough experimental data in that

range of concentrations, therefore warning about the reli-

ability of the prediction. In relation to Si, it seems that up to

about 0.7 wt.% the trend is to slightly increase the BS,

above this temperature the model predicts a subtle change

in the tendency, although error bars become larger this

uncertainty in Si effect is also observed through some of

the BS models found in the literature; for example; Steven

and Haynes [14] did not include any effect, Kunitake and

Okada [49] proposed a BS temperature rising when

increasing Si concentration, just in opposition with the

effect proposed by Kirkaldy and Venugopalan [39].

Although not revised in this set of results, the model pre-

dicts that Co, Al and V, in increasing quantities, increase

the BS temperature, see ref. [50].

In a similar scheme, MS transformation temperature is

influenced by the presence of increasing quantities of C,

Mn, Cr, Ni and Mo, again the model reflects well known

steel metallurgical facts [13, 14, 35, 37, 40]. In relation to

Si the model predicts nearly no change in the MS,

equivalent to the BS temperature the effect of silicon on

the martensite start temperature is uncertain. In some

cases Si has been found to decrease the MS temperature

[37, 40] but some other authors [14, 35] reported no

influence on it.

The performances of the models created were assessed

on the sets of data unseen during training. Figure 5 shows

the performance of the three models in this dataset,

showing that agreement with experimental data is very

good, exhibiting R2 values (square of the Pearson product

moment correlation coefficient) close to 1 for the BS and

MS models, and about 0.9 for the Tc.

Fig. 3 Evolution of Tc in Fe-X

diagrams, where X stands for C,

Cr, Mo and Mn. Solid lines

represent the model predictions;

meanwhile dashed lines

represent the error bounds
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Finally it is necessary to touch upon the unique feature

of the frame work used for the ANN models, to accompany

its predictions with an indication of the uncertainty as a

function of position in the input space, big errors bars

where there is a lack of enough experimental data, as it has

been already shown through this last section.

Conclusions

A very large data base has been used to create three

ANN models capable of predicting Tc, BS and MS tem-

peratures. This technique plus a Bayesian framework

have been chosen for its flexibility and ability of

Fig. 4 BS and MS predictions

for a steel of base composition

Fe—0.3 C—1 Mn—0.3 Si—0.6

Cr—0.25 Mo—0.1 V in wt.%

Fig. 5 Performance of the three

models on a test dataset of

unseen data during training
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accompanying its predictions with an estimation of the

uncertainty.

The analysis is empirical, but after appropriate training,

it is found to reliably reproduce known metallurgical

experience. The method is useful because the optimized

network summarizes knowledge in a quantitative manner

and can be retrained as new data became available. Those

models are different to those empirical and semi-empirical

models created by fitting equations to experimental data.
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